Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.567
Filtrar
1.
Med Oncol ; 41(4): 87, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472423

RESUMO

Liver cancer annually accounts for over 800,000 cases and 700,000 deaths worldwide. Hepatocellular carcinoma is responsible for over 80% of liver cancer cases. Due to ineffective treatment options and limited surgical interventions, hepatocellular carcinoma is notoriously difficult to treat. Nonetheless, drugs utilized for other medical conditions, such as the antihypertensive medication prazosin, the neuroleptic medication chlorpromazine, and the neuroleptic medication haloperidol, have gained attention for their potential anti-cancer effects. Therefore, this study used these medications for investigating toxicity to hepatocellular carcinoma while testing the adverse effects on a noncancerous liver cell line model THLE-2. After treatment, an XTT cell viability assay, cell apoptosis assay, reactive oxygen species (ROS) assay, apoptotic proteome profile, and western blot were performed. We calculated IC50 values for chlorpromazine and prazosin to have a molar range of 35-65 µM. Our main findings suggest the capability of both of these treatments to reduce cell viability and generate oxidative stress in HepG2 and THLE-2 cells (p value < 0.05). Haloperidol, however, failed to demonstrate any reduction in cell viability revealing no antitumor effect up to 100 µM. Based on our findings, a mechanism of cell death was not able to be established due to lack of cleaved caspase-3 expression. Capable of bypassing many aspects of the lengthy, costly, and difficult cancer drug approval process, chlorpromazine and prazosin deserve further investigation for use in conjunction with traditional chemotherapeutics.


Assuntos
Antineoplásicos , Antipsicóticos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Prazosina/farmacologia , Prazosina/uso terapêutico , Células Hep G2 , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral
2.
Adv Sci (Weinh) ; 11(15): e2304203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342610

RESUMO

Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias do Endométrio , Proteínas de Choque Térmico HSP70 , Proteínas de Membrana , Humanos , Feminino , Proteínas Quinases Ativadas por AMP/metabolismo , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Clorpromazina/metabolismo , Mitocôndrias/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo
3.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092755

RESUMO

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético
4.
Food Res Int ; 173(Pt 2): 113480, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803802

RESUMO

This paper aimed to investigate the in vivo absorption of egg white hydrolysate (EWH) in rats and the transport route across the intestinal epithelium. Results showed that the level of plasma peptide-bound amino acid (PAA) of the EWH-supplemented rats (EWH-R) was determined to be 2012.18 ± 300.98 µmol/L, 10.72% higher than that of the control group, and was significantly positively correlated to that of EWH. Thirty-three egg white-derived peptides were successfully identified from the plasma of EWH-R, and 20 of them were found in both EWH-R plasma and EWH, indicating that these peptides tend to be absorbed through the intestinal epithelium in intact forms into the blood circulation. In addition, 637 up-regulated and 577 down-regulated genes in Caco-2 cells incubated with EWH were detected by RNA-sequencing and the clathrin-dependent endocytosis was the most enriched pathway in KEGG analysis. EWH significantly increased the mRNA levels of the key genes involved in the clathrin-dependent endocytosis but these changes would be inhibited by the clathrin-dependent endocytosis inhibitor of chlorpromazine. Moreover, the transepithelial transport of EWH across Caco-2 cell monolayers was significantly reduced by chlorpromazine. This study provided molecular-level evidence for the first time that clathrin-dependent endocytosis might be the main transport route of EWH in the intestinal epithelium.


Assuntos
Clorpromazina , Clara de Ovo , Humanos , Ratos , Animais , Células CACO-2 , Clara de Ovo/química , Clorpromazina/farmacologia , Mucosa Intestinal , Peptídeos , Endocitose , Clatrina
5.
J Antimicrob Chemother ; 78(12): 2869-2877, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837411

RESUMO

BACKGROUND: Efflux pump inhibitors (EPIs) offer an attractive therapeutic option when combined with existing classes. However, their optimal dosing strategies are unknown. METHODS: MICs of ciprofloxacin (CIP)+/-chlorpromazine, phenylalanine-arginine ß naphthylamide (PAßN) and a developmental molecule MBX-4191 were determined and the pharmacodynamics (PD) was studied in an in vitro model employing Escherichia coli MG1655 and its isogenic MarR mutant (I1147). Exposure ranging experiments were performed initially then fractionation. Changes in bacterial load and population profiles were assessed. Strains recovered after EPI simulations were studied by WGS. RESULTS: The CIPMICs for E. coli MG1655 and I1147 were 0.08 and 0.03 mg/L. Chlorpromazine at a concentration of 60 mg/L, PAßN concentrations of 30 mg/L and MBX-4191 concentrations of 0.5-1.0 mg/L reduced CIP MICs for I1147 and enhanced bacterial killing. Using CIP at an AUC of 1.2 mg·h/L, chlorpromazine AUC was best related to reduction in bacterial load at 24 h, however, when the time drug concentration was greater than 25 mg/L (T > 25 mg/L) chlorpromazine was also strongly related to the effect. For PaßN with CIP AUC, 0.6 mg·h/L PaßN AUC was best related to a reduction in bacterial load. MBX-4191T > 0.5-0.75 mg·h/L was best related to reduction in bacterial load. Changes in population profiles were not seen in experiments of ciprofloxacin + EPIs. WGS of recovered strains from simulations with all three EPIs showed mutations in gyrA, gyrB or marR. CONCLUSIONS: AUC was the pharmacodynamic driver for chlorpromazine and PAßN while T > threshold was the driver for MBX-4191 and important in the activity of chlorpromazine and PAßN. Changes in population profiles did not occur with combinations of ciprofloxacin + EPIs, however, mutations in gyrA, gyrB and marR were detected.


Assuntos
Clorpromazina , Escherichia coli , Escherichia coli/genética , Clorpromazina/farmacologia , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
6.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839789

RESUMO

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Assuntos
Clorpromazina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Simulação de Acoplamento Molecular , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Antibacterianos/química , Ciprofloxacina/farmacologia , Etídio , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
7.
Virology ; 583: 45-51, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148647

RESUMO

The human rhinovirus (HRV) A2 is endocytosed by clathrin-mediated endocytosis (CME) bound to the classical LDL receptor and releases its RNA during its transport to late endosomes. Here it is shown that - presumably due to an effect on virus recycling - a low concentration of the CME inhibitor chlorpromazine present during virus internalization (30 min) did not reduce HRV-A2 infection, but strongly inhibited short-time (5 min) endocytosis of HRV-A2. Chlorpromazine had no effect on the colocalization of the ICAM-1 ligand HRV-A89 with early endosomes, excluding CME as the main endocytosis pathway of this virus. As published for HRV-A2 and HRV-A14, HRV-A89 partially colocalized with lysosome-associated membrane protein 2 and the microtubule inhibitor nocodazole did not reduce virus infection when present only during virus internalization. Together with previous work these data suggest that there are no principal differences between endocytosis pathways of ICAM-1-binding rhinoviruses in different cell types.


Assuntos
Capsídeo , Molécula 1 de Adesão Intercelular , Rhinovirus , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Clorpromazina/farmacologia , Clorpromazina/metabolismo , Clatrina/metabolismo , Endocitose , Endossomos/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Ligantes , Rhinovirus/metabolismo
8.
Chem Asian J ; 18(10): e202300169, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37071585

RESUMO

Antimicrobial resistance is a serious public health risk. Its severity is fueled on an unprecedented scale, necessitating the demand for novel antimicrobial scaffolds aimed at novel targets. Herein, we present cationic chlorpromazine peptide conjugates that are rationally intended to targetmultidrug-resistant (MDR) bacteria. The most potent compound, CPWL, of all the conjugates evaluated, showed promising antibacterial activity against clinical, MDR S. aureus, with no cytotoxicity. The molecular docking experiments confirmed that CPWL possessed a very high affinity for S. aureus enoyl reductase (saFabI). Furthermore, CPWL antibacterial action against saFabI was further corroborated by MD simulation studies. Thus, our findings highlight cationic chlorpromazine as a promising scaffold for the development of saFabI inhibitors to target severe staphylococcal infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Clorpromazina/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
9.
Toxins (Basel) ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828446

RESUMO

N-glycolylneuraminic acid (Neu5Gc) is a specific factor in red meat that induces intestinal disease. Our aim was to investigate the effect of Neu5Gc on the intestinal barrier as well as its mechanism of endocytosis and exocytosis. Ten specific inhibitors were used to explore the mechanism of Neu5Gc endocytosis and exocytosis by Caco-2 cells. Amiloride hydrochloride and cytochalasin D had the strongest inhibitory effect on the endocytosis of Neu5Gc. Sodium azide, dynasore, chlorpromazine hydrochloride, and nystatin also inhibited Neu5Gc endocytosis. Dynasore exhibited a stronger inhibitory effect than that of chlorpromazine hydrochloride or nystatin alone. Exocytosis inhibitors, including nocodazole, brefeldin A, monensin, and bafilomycin A, inhibited the transmembrane transport of Neu5Gc. Monensin promoted the exocytosis of Neu5Gc from Caco-2 cells. In another experiment, we observed no significant inhibitory effects of monensin and brefeldin A. Dietary concentrations of Neu5Gc induced prominent damage to intestinal tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 and promoted the phosphorylation of IκB-α and P65 to activate the canonical Nuclear Factor kappa-B (NF-κB) pathway. Neu5Gc increased the RNA levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α and inhibited those of anti-inflammatory factors TGF-ß and IL-10. BAY, an NF-κB signaling pathway inhibitor, attenuated these changes. Reductions in the levels of ZO-1, occludin, and claudin-1 were recovered in response to BAY. Our data reveal the endocytosis and exocytosis mechanism of Neu5Gc and prove that Neu5Gc can activate the canonical NF-κB signaling pathway, regulate the transcription of inflammatory factors, thereby damaging intestinal barrier function.


Assuntos
Clorpromazina , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células CACO-2 , Ocludina , Claudina-1/metabolismo , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Monensin/metabolismo , Monensin/farmacologia , Nistatina/metabolismo , Nistatina/farmacologia , Transdução de Sinais , Mucosa Intestinal
10.
Mol Neurobiol ; 60(5): 2644-2660, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36694048

RESUMO

The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity. On the other hand, D1R is highly expressed in the medial prefrontal cortex (mPFC), a brain area with important functions such as working memory. Here, we studied the impact of D1R-like constitutive activity and chlorpromazine (CPZ), an antipsychotic drug and D1R-like inverse agonist, on various neuronal CaV conductances, and we explored its effect on calcium-dependent neuronal functions in the mouse medial mPFC. Using ex vivo brain slices containing the mPFC and transfected HEK293T cells, we found that CPZ reduces CaV2.2 currents by occluding D1R-like constitutive activity, in agreement with a mechanism previously reported by our lab, whereas CPZ directly inhibits CaV1 currents in a D1R-like activity independent manner. In contrast, CPZ and D1R constitutive activity did not affect CaV2.1, CaV2.3, or CaV3 currents. Finally, we found that CPZ reduces excitatory postsynaptic responses in mPFC neurons. Our results contribute to understanding CPZ molecular targets in neurons and describe a novel physiological consequence of CPZ non-canonical action as a D1R-like inverse agonist in the mouse brain.


Assuntos
Clorpromazina , Receptores Dopaminérgicos , Camundongos , Humanos , Animais , Clorpromazina/farmacologia , Agonismo Inverso de Drogas , Células HEK293 , Neurônios/metabolismo , Canais de Cálcio , Córtex Pré-Frontal/metabolismo , Cálcio/metabolismo
11.
J Appl Toxicol ; 43(4): 474-489, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36165981

RESUMO

In this review, we summarized the current literature on the impact of phenothiazine derivatives on autophagy in vitro. Phenothiazines are antipsychotic drugs used in the treatment of schizophrenia, which is related to altered neurotransmission and dysregulation of neuronal autophagy. Thus, phenothiazine derivatives can impact autophagy. We identified 35 papers, where the use of the phenothiazines in the in vitro autophagy assays on normal and cancer cell lines, Caenorhabditis elegans, and zebrafish were discussed. Chlorpromazine, fluphenazine, mepazine, methotrimeprazine, perphenazine, prochlorperazine, promethazine, thioridazine, trifluoperazine, and novel derivatives can modulate autophagy. Stimulation of autophagy by phenothiazines may be either mammalian target of rapamycin (mTOR)-dependent or mTOR-independent. The final effect depends on the used concentration as well as the cell line. A further investigation of the mechanisms of autophagy regulation by phenothiazine derivatives is required to understand the biological actions and to increase the therapeutic potential of this class of drugs.


Assuntos
Antipsicóticos , Animais , Antipsicóticos/toxicidade , Peixe-Zebra , Promazina , Fenotiazinas/farmacologia , Clorpromazina/farmacologia , Mamíferos
12.
Br J Pharmacol ; 180(9): 1210-1231, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36480023

RESUMO

BACKGROUND AND PURPOSE: CaV 3.1-3 currents differentially contribute to neuronal firing patterns. CaV 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about CaV 3 as targets of the constitutive activity of GPCRs is scarce. We investigate the impact of D5 recpetor constitutive activity, a GPCR with high levels of basal activity, on CaV 3 functionality. D5 recpetor and CaV 3 are expressed in the hippocampus and have been independently linked to pathophysiological states associated with epilepsy. EXPERIMENTAL APPROACH: Our study models were HEK293T cells heterologously expressing D1 or D5 receptor and CaV 3.1-3, and mouse brain slices containing the hippocampus. We used chlorpromazine (D1 /D5 inverse agonist) and a D5 receptor mutant lacking constitutive activity as experimental tools. We measured CaV 3 currents and excitability parameters using the patch-clamp technique. We completed our study with computational modelling and imaging technique. KEY RESULTS: We found a higher sensitivity to TTA-P2 (CaV 3 blocker) in CA1 pyramidal neurons obtained from chlorpromazine-treated animals compared with vehicle-treated animals. We found that CaV 3.2 and CaV 3.3-but not CaV 3.1-are targets of D5 receptor constitutive activity in HEK293T cells. Finally, we found an increased firing rate in CA1 pyramidal neurons from chlorpromazine-treated animals in comparison with vehicle-treated animals. Similar changes in firing rate were observed on a neuronal model with controlled CaV 3 currents levels. CONCLUSIONS AND IMPLICATIONS: Native hippocampal CaV 3 and recombinant CaV 3.2-3 are sensitive to D5 receptor constitutive activity. Manipulation of D5 receptor constitutive activity could be a valuable strategy to control neuronal excitability, especially in exacerbated conditions such as epilepsy.


Assuntos
Dopamina , Receptores de Dopamina D1 , Animais , Humanos , Camundongos , Clorpromazina/farmacologia , Agonismo Inverso de Drogas , Células HEK293 , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo
13.
Environ Sci Pollut Res Int ; 30(9): 23637-23645, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36327078

RESUMO

Chlorpromazine (CPZ) is a neuroleptic and antipsychotic medication for individuals suffering from schizophrenia and other medical conditions. This study investigated the effects of CPZ on the hematological, biochemical, and biometric characteristics in juvenile Clarias gariepinus. The fish were exposed to 0.53, 1.06, and 2.11 mgL-1 CPZ for 15 days after which they were withdrawn from the toxicant and allowed to recover for 5 days. Blood were sampled from the fish on days 1, 5, 10, 15, and during the 5-day recovery for hematological and biochemical analysis, and thereafter, the fish were sacrificed for the morphometric analysis. While the values of the white blood cells significantly increased in the exposed fish, the hemoglobin, red blood cells, and packed cell volume decreased. Compared with the control, there were no significant differences in the values of the blood derivatives in the exposed fish. The values of protein and glucose reduced, but those of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were significantly elevated. Though there was no significant difference in the condition factor, a significant increase in hepatosomatic index occurred on day 15 at 5.28 mg/L CPZ. After the 5-day withdrawal from the drug, most of the studied parameters returned to the control values. The present study indicated that CPZ is toxic to fish and should be used with utmost care to guard against toxicological effect on non-target organisms.


Assuntos
Antipsicóticos , Peixes-Gato , Animais , Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Hematócrito , Eritrócitos , Peixes-Gato/metabolismo , Biometria
14.
Pharm Biol ; 60(1): 1679-1689, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36063125

RESUMO

CONTEXT: Kuhuang (KH) injection is a widely used anticholestatic drug in the clinic and the mechanisms are still unclear. OBJECTIVE: This study uses a new 3D tissue-engineered (TE) liver platform to study the ability of kuhuang to ameliorate liver injury induced by chlorpromazine (CPZ) and the possible mechanisms involved. MATERIALS AND METHODS: The TE livers (n = 25) were divided into 5 groups (n = 5 livers/group) as 3D, 3D + CPZ, 3D + CPZ + KH, 3D + CPZ + GW9662 (a PPARγ inhibitor) and 3D + CPZ + KH + GW9662. The treatments with kuhuang (1 mg/mL) and GW9662 (10 µmol/L) were given to the desired groups on the 7th day of the experimental process. 20 µmol/L CPZ was added on the 8th day. RESULTS: According to the 2D experimental results, the minimum effective concentration of kuhuang is 10 µg/mL and the optimal effective concentration is 1 mg/mL. Kuhuang ameliorated tissue damage in the TE livers both in terms of tissue structure and culture supernatant. Kuhuang significantly reduced TBA accumulation (38%) and downregulated CYP7A1 (38%) and CYP8B1 (79%). It reduced hepatic levels of ROS (14%), MDA (27%) but increased the levels of GSH (41%), SOD (12%), BSEP (4.4-fold), and MRP2 (74%). Moreover, kuhuang downregulated DR5 (99%) but increased the mRNA expression of PPARγ (4-fold). Molecular docking analyses determined the bioactivity of the active compounds of kuhuang through their specific bindings to PPARγ. CONCLUSIONS: Kuhuang could alleviate CPZ-induced cholestatic liver injury by activating PPARγ to reduce oxidative stress. Applying kuhuang for the treatment of CPZ-induced liver injury could be suggested.


Assuntos
Clorpromazina , PPAR gama , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Fígado , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Engenharia Tecidual
15.
Cells ; 11(18)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139363

RESUMO

The maternal immune activation produced by the systemic administration of lipopolysaccharide (LPS) in rats provides valuable insights into the basis of behavioural schizophrenia-like disturbances and biochemical changes in the brains of the offspring, such as microglial activation. Regarding therapy, antipsychotics continually constitute the cornerstone of schizophrenia treatment. To their various efficacy and side effects, as well as not fully recognised mechanisms of action, further characteristics have been suggested, including an anti-inflammatory action via the impact on neuron-microglia axes responsible for inhibition of microglial activation. Therefore, in the present study, we sought to determine whether chronic treatment with chlorpromazine, quetiapine or aripiprazole could influence schizophrenia-like behavioural disturbances at the level of sensorimotor gating in male offspring prenatally exposed to LPS. Simultaneously, we wanted to explore if the chosen antipsychotics display a positive impact on the neuroimmunological parameters in the brains of these adult animals with a special focus on the ligand-receptor axes controlling neuron-microglia communication as well as pro- and anti-inflammatory factors related to the microglial activity. The results of our research revealed the beneficial effect of quetiapine on deficits in sensorimotor gating observed in prenatally LPS-exposed offspring. In terms of axes controlling neuron-microglia communication and markers of microglial reactivity, we observed a subtle impact of quetiapine on hippocampal Cx3cl1 and Cx3cr1 levels, as well as cortical Cd68 expression. Hence, further research is required to fully define and explain the involvement of quetiapine and other antipsychotics in Cx3cl1-Cx3cr1 and/or Cd200-Cd200r axes modulation and inflammatory processes in the LPS-based model of schizophrenia-like disturbances.


Assuntos
Antipsicóticos , Microglia , Animais , Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Clorpromazina/farmacologia , Lobo Frontal , Ligantes , Lipopolissacarídeos/farmacologia , Masculino , Neurônios , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/uso terapêutico , Ratos , Ratos Wistar , Filtro Sensorial
16.
Biochem Biophys Res Commun ; 626: 156-166, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35994825

RESUMO

We previously reported that the antipsychotic drug chlorpromazine (CPZ), which inhibits the formation of clathrin-coated vesicles (CCVs) essential for endocytosis and intracellular transport of receptor tyrosine kinase (RTK), inhibits the growth/survival of acute myeloid leukemia cells with mutated RTK (KIT D816V or FLT3-ITD) by perturbing the intracellular localization of these molecules. Here, we examined whether these findings are applicable to epidermal growth factor receptor (EGFR). CPZ dose-dependently inhibited the growth/survival of the non-small cell lung cancer (NSCLC) cell line, PC9 harboring an EGFR-activating (EGFR exon 19 deletion). In addition, CPZ not only suppressed the growth/survival of gefitinib (GEF)-resistant PC9ZD cells harboring T790 M, but also restored their sensitivities to GEF. Furthermore, CPZ overcame GEF resistance caused by Met amplification in HCC827GR cells. As for the mechanism of CPZ-induced growth suppression, we found that although CPZ hardly influenced the phosphorylation of EGFR, it effectively reduced the phosphorylation of ERK and AKT. When utilized in combination with trametinib (a MEK inhibitor), dabrafenib (an RAF inhibitor), and everolimus (an mTOR inhibitor), CPZ suppressed the growth of PC9ZD cells cooperatively with everolimus but not with trametinib or dabrafenib. Immunofluorescent staining revealed that EGFR shows a perinuclear pattern and was intensely colocalized with the late endosome marker, Rab11. However, after CPZ treatment, EGFR was unevenly distributed in the cells, and colocalization with the early endosome marker Rab5 and EEA1 became more apparent, indicating that CPZ disrupted the intracellular transport of EGFR. These results suggest that CPZ has therapeutic potential for NSCLC with mutated EGFR by a novel mechanism different from conventional TKIs alone or in combination with other agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Everolimo/farmacologia , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia
17.
Mediators Inflamm ; 2022: 6886752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873710

RESUMO

Cerebral ischemia-reperfusion (I/R) incites neurologic damage through a myriad of complex pathophysiological mechanisms, most notably, inflammation and oxidative stress. In I/R injury, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) produces reactive oxygen species (ROS), which promote inflammatory and apoptotic pathways, augmenting ROS production and promoting cell death. Inhibiting ischemia-induced oxidative stress would be beneficial for reducing neuroinflammation and promoting neuronal cell survival. Studies have demonstrated that chlorpromazine and promethazine (C+P) induce neuroprotection. This study investigated how C+P minimizes oxidative stress triggered by ischemic injury. Adult male Sprague-Dawley rats were subject to middle cerebral artery occlusion (MCAO) and subsequent reperfusion. 8 mg/kg of C+P was injected into the rats when reperfusion was initiated. Neurologic damage was evaluated using infarct volumes, neurological deficit scoring, and TUNEL assays. NOX enzymatic activity, ROS production, protein expression of NOX subunits, manganese superoxide dismutase (MnSOD), and phosphorylation of PKC-δ were assessed. Neural SHSY5Y cells underwent oxygen-glucose deprivation (OGD) and subsequent reoxygenation and C+P treatment. We also evaluated ROS levels and NOX protein subunit expression, MnSOD, and p-PKC-δ/PKC-δ. Additionally, we measured PKC-δ membrane translocation and the level of interaction between NOX subunit (p47phox) and PKC-δ via coimmunoprecipitation. As hypothesized, treatment with C+P therapy decreased levels of neurologic damage. ROS production, NOX subunit expression, NOX activity, and p-PKC-δ/PKC-δ were all significantly decreased in subjects treated with C+P. C+P decreased membrane translocation of PKC-δ and lowered the level of interaction between p47phox and PKC-δ. This study suggests that C+P induces neuroprotective effects in ischemic stroke through inhibiting oxidative stress. Our findings also indicate that PKC-δ, NOX, and MnSOD are vital regulators of oxidative processes, suggesting that C+P may serve as an antioxidant.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Masculino , NADPH Oxidases/metabolismo , Estresse Oxidativo , Prometazina/farmacologia , Prometazina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Superóxido Dismutase/metabolismo
18.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744777

RESUMO

The COVID-19 pandemic, caused by the rapidly spreading SARS-CoV-2 virus, led to the unprecedented mobilization of scientists, resulting in the rapid development of vaccines and potential pharmaceuticals. Although COVID-19 symptoms are moderately severe in most people, in some cases the disease can result in pneumonia and acute respiratory failure as well as can be fatal. The severe course of COVID-19 is associated with a hyperinflammatory state called a cytokine storm. One of the key cytokines creating a proinflammatory environment is IL-6, which is secreted mainly by monocytes and macrophages. Therefore, this cytokine has become a target for some therapies that inhibit its biological action; however, these therapies are expensive, and their availability is limited in poorer countries. Thus, new cheaper drugs that can overcome the severe infections of COVID-19 are needed. Here, we show that chlorpromazine inhibits the expression and secretion of IL-6 by monocytes activated by SARS-CoV-2 virus nucleocapsid protein and affects the activity of NF-κB and MEK/ERK signaling. Our results, including others, indicate that chlorpromazine, which has been used for several decades as a neuroleptic, exerts antiviral and immunomodulatory activity, is safe and inexpensive, and might be a desirable drug to support the therapy of patients with COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Clorpromazina/farmacologia , Citocinas/metabolismo , Humanos , Interleucina-6 , Monócitos/metabolismo , Nucleocapsídeo/metabolismo , Pandemias
19.
Fundam Clin Pharmacol ; 36(6): 1066-1082, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35475507

RESUMO

In recent years, bacterial resistance to traditional drugs has increased, and the need to find new effective antibiotics to treat infections caused by multidrug-resistant bacteria has consequently become more important. The current study aimed to evaluate the potentiation of antibiotic activity and efflux pumps inhibition by (2E)-1-(4-aminophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (PA-Fluorine) against the standard and resistant bacterial strains of Staphylococcus aureus and Escherichia coli. The association between PA-Fluorine and ampicillin reduced the minimum inhibitory concentration (MIC), showing a synergistic effect against S. aureus. For E. coli, PA-Fluorine did not show any significant results when associated with ampicillin. Ciprofloxacin and chlorpromazine showed synergy with PA-Fluorine on the two studied strains. An efflux pump mechanism was involved in the mechanism of action of chlorpromazine, norfloxacin, and ethidium bromide. PA-Fluorine synergistically modulated norfloxacin and bromide. It was thus concluded that PA-Fluorine has the potential to enhance antibacterial activity when combined with antibiotics. Molecular docking studies showed the effect of intermolecular interactions of PA-Fluorine on the NorA and MepA efflux pumps. Physicochemical and pharmacokinetic properties were also obtained by ADMET studies for this chalcone, which presents be a strong candidate as an efflux pump inhibitor.


Assuntos
Antibacterianos , Simportadores , Ampicilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Clorpromazina/farmacologia , Escherichia coli/metabolismo , Flúor/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Norfloxacino/farmacologia , Staphylococcus aureus , Simportadores/metabolismo
20.
Neurotox Res ; 40(3): 791-802, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35438391

RESUMO

Chlorpromazine, an antipsychotic medication, is conventionally applied to cope with the psychotic disorder such as schizophrenia. In cellular studies, chlorpromazine exerts many different actions through calcium ion (Ca2+) signaling, but the underlying pathways are elusive. This study explored the effect of chlorpromazine on viability, Ca2+ signaling pathway and their relationship in glial cell models (GBM 8401 human glioblastoma cell line and Gibco® Human Astrocyte (GHA)). First, chlorpromazine between 10 and 40 µM induced cytotoxicity in GBM 8401 cells but not in GHA cells. Second, in terms of Ca2+ homeostasis, chlorpromazine (10-30 µM) increased intracellular Ca2+ concentrations ([Ca2+]i) rises in GBM 8401 cells but not in GHA cells. Ca2+ removal reduced the signal by approximately 55%. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced chlorpromazine (10-40 µM)-induced cytotoxicity in GBM 8401 cells. Third, in Ca2+-containing medium of GBM 8401 cells, chlorpromazine-induced Ca2+ entry was inhibited by the modulators of store-operated Ca2+ channel (2-APB and SKF96365). Lastly, in Ca2+-free medium of GBM 8401 cells, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin completely inhibited chlorpromazine-increased [Ca2+]i rises. Conversely, treatment with chlorpromazine abolished thapsigargin-increased [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished chlorpromazine-increased [Ca2+]i rises. Together, in GBM 8401 cells but not in GHA cells, chlorpromazine increased [Ca2+]i rises by Ca2+ influx via store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. Moreover, the Ca2+ chelator BAPTA-AM inhibited cytotoxicity in chlorpromazine-treated GBM 8401 cells. Therefore, Ca2+ signaling was involved in chlorpromazine-induced cytotoxicity in GBM 8401 cells.


Assuntos
Antipsicóticos , Sinalização do Cálcio , Antipsicóticos/toxicidade , Apoptose , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Quelantes , Clorpromazina/farmacologia , Humanos , Neuroglia/metabolismo , Tapsigargina/farmacologia , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...